On distinguished orbits of reductive representations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinguished Orbits of Reductive Groups

We prove a generalization and give a new proof of a theorem of Borel-Harish-Chandra on closed orbits of linear actions of reductive groups. Consider a real reductive algebraic group G acting linearly and rationally on a real vector space V . G can be viewed as the real points of a complex reductive group G C which acts on V C := V ⊗ C. In [BHC62] it was shown that G · v ∩ V is a finite union of...

متن کامل

Distinguished positive regular representations

Let $G$ be a tamely ramified reductive $p$-adic‎ ‎group‎. ‎We study distinction of a class of irreducible admissible representations‎ ‎of $G$ by the group of fixed points $H$ of an involution‎ ‎of $G$‎. ‎The representations correspond to $G$-conjugacy classes of‎ ‎pairs $(T,phi)$‎, ‎where $T$ is a‎ ‎tamely ramified maximal torus of $G$ and $phi$ is a quasicharacter‎ ‎of $T$ whose restriction t...

متن کامل

Representations of Reductive Groups

This course consists of two parts. In the first we will study representations of reductive groups over local non-archimedian fields [ such as Qp and Fq((s))]. In this part I’ll closely follow the notes of the course of J.Bernstein. Moreover I’ll often copy big chanks from these notes. In the second the representations of reductive groups over 2-dimensional local fields [ such as Qp((s))]. In th...

متن کامل

Distinguished Representations for Sl ( 2 )

Let E/F be a quadratic extension of p-adic fields. We compute the multiplicity of the space of SL2(F )-invariant linear forms on a representation of SL2(E). This multiplicity varies inside an L-packet similar in spirit to the multiplicity formula for automorphic representations due to Labesse and Langlands.

متن کامل

Coisotropic Representations of Reductive Groups

A symplectic action G : X of an algebraic group S on a symplectic algebraic variety X is called coisotropic if a generic orbit of this action is a coisotropic submanifold of X. In this article a classification of coisotropic symplectic linear actions G : V is given in the case where G is a reductive group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2013

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2013.07.031